
4. Podstawy programowania (C++)
C++ – język programowania ogólnego przeznaczenia.

Pierwszy krok w stronę programowania wydaje się trudny i taki jest – dla nauczyciela jak i stu-
denta – dla tego krok ten należy wykonywać bardzo ostrożnie. Aby uniknąć trudności technicznych
związanych z językami programowania, nasze pierwsze programy napiszemy w pseudokodzie.

Pseudokodem nazywany jest taki sposób zapisu algorytmu, który zachowując strukturę charak-
terystyczną dla kodu zapisanego w języku programowania ale rezygnuje ze ścisłych reguł składnio-
wych na rzecz prostoty i czytelności.

W celu możliwie największego uproszczenia nauki programowania, ograniczymy się, do kilku
komend pseudokodu:

• Powtarzaj { … } – pętla, która będzie się wykonywała w kółko tak długo, jak długo będzie
spełniony pewien warunek,

• Jeżeli … to wykonaj { … } – instrukcja warunkowa, która będzie wykonana tylko wtedy, kie-
dy spełniony będzie określony warunek,

• Użyj pinu jako … – jeśli będziemy chcieli użyć któregoś z pinów, musimy ustawić go jako
wejście lub wyjście,

• Odczytaj pin – pozwoli nam odczytać czy na danym wejściu jest logiczne 0 czy 1,

• Ustaw pin jako … – pozwoli na danym wyjściu ustawić 0 albo 1,

• Zapamiętaj, że … to … – zmienne, zapamiętujące liczby (podobnie jak markery w PLC),

• Dodaj, odejmij, pomnóż podziel,

• Czekaj ….

Ponadto użyteczne są też komentarze przy pisaniu bardziej skomplikowanych programów. Każ-
da linijka zaczynająca się od //, # i każdy tekst wewnątrz /* … */ będzie ignorowany.

Cała trudność programowania sprowadza się w tej chwili do przetłumaczenia tego co byśmy
chcieli zrobić na pseudokod.

Zadanie 4.1

Zapoznać się z przykładami 1 oraz 2, a następnie napisać pseudokod sygnalizujący za pomocą
diody czy zostały wciśnięte wybrane trzy przyciski z pięciu. Dioda podłączona jest do pinu 8, nato-
miast przyciski do pinów 2, 3, 4, 5 oraz 6. Uwaga na przypadek wciśnięcia wszystkich 5 przyci-
sków – dioda nie może się wtedy zapalić. Ponadto, warunki można łączyć np. Jeżeli a to 1 oraz b to
1, to { … }.

Przykład 1

Napisać w pseudokodzie program: mrugaj diodą co 1s na 0,5s. Dioda podłączona jest do pinu 7.

Rozwiązanie:

//Żeby sobie ułatwić zadanie i nie musieć zapamiętywać co jest
// gdzie podłączone (teraz mamy tylko jedną diodę podłączoną do
// jakiegoś tam pinu, ale gdyby tych diod było 5, a gdzieś
// jeszcze jakieś inne rzeczy?) powiemy sobie na początek, że
// wszędzie tam, gdzie będziemy używali słowa <<dioda>>, będziemy
// mieli na myśli <<7>>:

Zapamiętaj, że dioda to 7.

//Z przyczyn technicznych piny nie mogą być w tym samym momencie
// wejściem i wyjściem, trzeba zatem, zanim się ich użyje ustalić
// czy chcemy ich używać jako wejście czy jako wyjście:

Użyj pinu dioda jako wyjście.

//Jeśli chodzi o kwestie techniczne, to mamy już wszystko opisane
// pozostało nam zatem wykonać samo mruganie.

//Ponieważ chcemy, aby dioda mrugała i nigdy nie przestała, najłatwiej
// będzie wykorzystać do tego pętlę, w której dioda zapali się,
// chwilę poświeci potem zgaśnie i chwilę pobędzie zgaszona:

Powtarzaj bez końca {
Ustaw pin dioda na 1.
Poczekaj 0,5s.
Ustaw pin dioda na 0.
Poczekaj 1s.

}

Przykład 2

Napisać w pseudokodzie program: po wciśnięciu przycisku zapal diodę na 3s. Dioda podłączona
jest do pinu 7, przycisk do pinu 3. Jeśli przycisk jest wciśnięty, do pinu dociera logiczne 1.

Do rozwiązania tego zadania wykorzystamy część z przykładu 1, a więc:

//zapamiętamy w programie do którego pinu podłączona jest dioda
// a do którego przycisk:

Zapamiętaj, że dioda to 7.
Zapamiętaj, że przycisk to 3.

//Ustawmy odpowiednio piny jako wyjścia oraz wejścia:

Użyj pinu dioda jako wyjście.
Użyj pinu przycisk jako w ejście .

//Ponownie, chcemy by program wykonywał się w nieskończoność – tj.
// czekaj na wciśnięcie przycisku, zapal diodę, poczekaj, zgaś
// i czekaj na ponowne wciśnięcie przycisku:

Powtarzaj bez końca {
//Odczytajmy i zapamiętajmy czy przycisk jest 1 czy 0:
Zapamiętaj, że wciśnięcie to {odczytaj pin przycisk}.
Jeżeli wciśnięcie równa się 1, to wykonaj {

Ustaw pin dioda na 1.
Poczekaj 3s.
Ustaw pin dioda na 0.

}
}

Krok drugi sprowadza się do przetłumaczenia pseudokodu na język programowania, który póź-
niej zostanie przetłumaczony (przez komputer) na język maszynowy.

Język wysokiego poziomu (autokod) – typ języka programowania, którego składnia i słowa klu-
czowe mają maksymalnie ułatwić rozumienie kodu programu dla człowieka, tym samym zwiększa-
jąc poziom abstrakcji i dystansując się od sprzętowych niuansów.

Pseudokod C++ (Arduino)
Powtarzaj bez końca:

Włącz diodę
Poczekaj 1 s. (1000 ms.)
Wyłącz diodę
Poczekaj 1 s. (1000 ms.)

while(1){ //logiczna jedynka
 digitalWrite(dioda, HIGH);
 delay(1000);
 digitalWrite(dioda, LOW);
 delay(1000);
}

Arduino składa się z 8-bitowego mikrokontrolera Atmel AVR z uzupełniającymi elementami w
celu ułatwienia programowania oraz włączenia innych układów. Mikrokontroler, mikrokomputer
jednoukładowy to scalony system mikroprocesorowy, zrealizowany w postaci pojedynczego układu
zawierającego procesor, pamięć RAM, układy wejścia-wyjścia i na ogół pamięć programu.

Program z przykładu 1 napisany dla Arduino:

int dioda = 7; // definicja zmiennej (globalnej)

void setup() { //funkcja wykonywana raz, po włączeniu zasilania
 pinMode(dioda, OUTPUT); //ustawia pin nr 7 jako wyjście
}

void loop() { //funkcja wykonywana w kółko
 digitalWrite(dioda, HIGH); //ustaw na 7 wyjściu 5V (logiczne 1)
 delay(500); //czekaj 1000 ms. = 1 s.
 digitalWrite(dioda, LOW); //ustaw na 7 wyjściu 0V (logiczne 0)
 delay(1000); //czekaj 1 s.
}

Jak widać większość instrukcji i całość programu jest bardzo podobna do rozwiązania przykładu
pierwszego. Należy się jednak kilka uwag:

• Wszystko co jest wewnątrz nawiasów klamrowych {} funkcji void loop() będzie wykony-
wane w kółko po uruchomieniu Arduino,

• wszystko co jest wewnątrz {} funkcji setup, wykonane zostanie raz po uruchomieniu Ardu-
ino. Jest to doskonałe miejsce na np. ustawienie pinów jako wejścia/wyjścia czy uruchomie-
nie komunikacji RS (o tym kiedy indziej).

• deklaracje zmiennych, aby nie komplikować sobie nauki, będziemy umieszczać na początku
programu czyli przed setup i loop, a wszystkie zmienne będą typu int, chyba, że w poleceniu
będzie zaznaczone co innego. Deklaracja ma postać:

int dioda = 7;

typ zmiennej nazwa zmiennej przypisanie wartości (opcjonalne)

Zmienna int może przyjmować wartości od -32768 do 32767 (tylko całkowite).

Tłumaczenie z pseudokodu (programowanie w Arduino)

Aby nasze programy mogły zadziałać musimy je przetłumaczyć na język

Zacznijmy więc od szablonu pustego programu w którym będziemy umieszczali nasze tłumacze-
nia:

// miejsce na deklaracje zmiennych
// jeśli gdzieś będziemy używali zmiennych (np. do zapamiętania odczytanej
// wartości na pinie wejściowym), należy o tym poinformować program przed
// void setup(){}. Np.: int wcisniecie1;
// albo int przycisk3 = 4;

void setup() {
// funkcja wykonywana raz, po włączeniu zasilania
// Tutaj umieścimy rzeczy, które mogą wykonać się
// tylko raz, ponieważ później nie ulegną zmianie.
// Np. pinMode(…).

}

void loop() {
// funkcja wykonywana w kółko (bez końca)
// Tutaj znajdą się rzeczy, które program ma
// wykonywać w sposób ciągły (np. sprawdzanie co
// jest na wejściach i ustawianie co ma być na
// wyjściach)

}

Bardzo często przy programowaniu pojawiać się będzie słowo WARUNEK. Warunek jest to
pewne działanie logiczne lub arytmetyczne zwracające wartość 0 (warunek niespełniony) lub inną
(warunek spełniony):

a > b lub b < a a większe od b
a >= b a większe bądź równe b
a == b a równe b (ważne, podwójne równa się!)
a != b a nie-równe b

Łączenie warunków: ORAZ: if (warunek1 && warunek2){...}

LUB: if (warunek1 || warunek2){...}

Poniżej tłumaczenia wcześniejszych instrukcji

Należy pamiętać o tym, że każda instrukcja (poza pętlami i funkcjami warunkowymi) musi
się kończyć średnikiem (;).

Jeżeli … to wykonaj { … } – instrukcja warunkowa, która będzie wykonana tylko wtedy, kiedy
spełniony będzie określony warunek, np.:

zmienna = 10;
if(zmienna == 11){

digitalWrite(dioda, HIGH);
}

Co należy odczytać jako: ustaw zmienną na 10, następnie sprawdź czy zmienna ma wartość 11.
Jeśli tak – zapal diodę, jeśli nie – pomiń.

Użyj pinu jako … – jeśli będziemy chcieli użyć któregoś z pinów, musimy ustawić go jako wej-
ście lub wyjście.

pinMode(pin, OUTPUT); //ustaw pin jako wyjście (np. dioda)
pinMode(pin, INPUT); //ustaw pin jako wejście (np. przycisk)

Odczytaj pin – pozwoli nam odczytać czy na danym wejściu jest logiczne 0 czy 1,

digitalRead(10); //sprawdza czy pinie nr 10 jest logiczne 0 czy 1

Samo odczytanie nie miałoby większego sensu, ale można wynik funkcji zapisać do zmiennej
albo wykorzystać jako WARUNEK funkcji if, while itd.:

//zadeklaruj zmienną wcisniety oraz zmienną gdzie podpięty jest przycisk
int wcisniety = 0;
int przycisk = 7;

//zapamiętaj czy przycisk jest wciśnięty czy nie
wcisniety = digitalRead(przycisk);

//jeżeli przycisk był wciśnięty – zapal diodę
if(przycisk == 1){

digitalWrite(dioda, HIGH);
}

//jeżeli przycisk nie był wciśnięty – zgaś diodę
if(przycisk == 0){

digitalWrite(dioda, LOW);
}

Ustaw pin jako … – pozwoli na danym wyjściu ustawić 0 albo 1:

digitalWrite(13, HIGH); //ustawia na pinie 13 logiczne 1
digitalWrite(13, LOW); //ustawia na pinie 13 logiczne 0

Zapamiętaj, że … to … – zmienne, zapamiętujące liczby (znaki):

zmienna = 12; //aby zapamiętać nową wartość zmiennej, używamy znaku
 // (pojedynczego!) równa się. Od tego momentu zmienna
 // zmienna będzie przechowywała wartość 12.

Powtarzaj { … } – pętla, która będzie wykonywana tak długo, jak długo będzie spełniony waru-
nek. Jedną z takich pętli jest pętla while(warunek){ciało_funkcji}, np.:

zmienna = 0;
while(zmienna < 10){

digitalWrite(dioda, HIGH);
 delay(1000);
 digitalWrite(dioda, LOW);
 delay(1000);

zmienna = zmienna + 1;
}

Co można odczytać, jako: ustaw zmienną na 0, następnie sprawdź czy zmienna jest mniejsza od
10 – jeśli tak, zapal diodę i poczekaj sekundę, zgaś diodę i poczekaj sekundę. Zwiększ zmienną o
jeden. Koniec pętli – wróć na początek i ponownie: sprawdź czy zmienna jest mniejsza od 10 itd…
Jeśli warunek nie jest spełniony, program przeskakuje za klamrę }.

Dodaj, odejmij, pomnóż podziel:

zmienna = 3 + 2; //zmienna przyjmie wartość 5
zmienna = 3 – 2; //zmienna przyjmie wartość 1
zmienna = 3 * 2; //zmienna przyjmie wartość 6
zmienna = 3 / 2; //zmienna przyjmie wartość 1!

// jeśli zmienna była typu int, może przechowywać
// wartości jedynie całkowite, a komputer
// zaokrągla tylko w dół

zmienna++; //zwiększ zmienną o 1
zmienna--; //zmniejsz zmienną o 1

Czekaj…:

delay(1000); //program zatrzyma się na 1s. 1s = 1000ms

Zadanie 4.2

Przetłumaczyć na C++ przykład 2 oraz przete-
stować jego działanie (patrz koniec instrukcji).

Układ do testowania programu z przykładu 2
przedstawiono po prawej. VCC to wyjście 5V na
Arduino.

Zadanie 4.3

Przetłumaczyć na C++ zadanie 5.1 (bez testo-
wania)

Zadanie dodatkowe

Napisać program w pseudokodzie a następnie w C++ sterujący silnikiem. Do sterowania służą
dwa przyciski (lewo oraz prawo podłączone do pinów 6 oraz 7). Silnik podłączony jest jest do pi-
nów 8 i 9. Ustawienie wyjść na 1 i 0 powoduje ruch silnika w lewo, ustawienie wyjść na 0 i 1 po-
woduje ruch silnika w prawo, natomiast 0 i 0 – zatrzymanie silnika.

Sprawdzanie programów na Arduino

Aby sprawdzić poprawność napisanych przez nas programów, możemy ponownie posłużyć się
stroną tinkdercad.com. Program wgrać można na Arduino, musimy więc go użyć w naszym ukła-
dzie:

Po wybraniu Kod z menu oraz przestawieniu (poniżej) z Bloki na Tekst pojawi nam się miejsce
na napisany przez nas kod. Po wybraniu uruchom symulację, program powinien się skompilować i
uruchomić. W przypadku błędów, dostaniemy o tym informację.

Należy jednak pamiętać, że żeby przycisk dawał sygnał, musi być gdzieś do Arduino podłączo-
ny, podobnie jak diody – żeby się zaświecić, muszą istnieć w symulacji.

https://www.arduino.cc/reference/en/

Patryk Król
V3.0

	Zadanie 4.1
	Tłumaczenie z pseudokodu (programowanie w Arduino)
	Poniżej tłumaczenia wcześniejszych instrukcji
	Zadanie dodatkowe

