
7. Arduino

Komunikacja z innymi urządzeniami

Port szeregowy nie jest jedynym standardem komunikacji pomiędzy urządzeniami. W zależności
od potrzeb stosuje się różne rozwiązania – komunikację jednokierunkową lub dwukierunkową, sze-
regową lub równoległą, cyfrową lub analogową, na małe lub wielkie odległości itd.

Najpopularniejsze standardy i urządzenia posiadają swoje implementacje w środowisku Arduino
– wystarczy więc wiedzieć jakiego urządzenia chcemy użyć i jak obsłużyć odpowiednie biblioteki.

Przykładami popularnych urządzeń, do których biblioteki są dostępne są:

Dalmierz ultradźwiękowy
HC-SR04

Termometr + wilgotnościomierz
DHT11 (niebieski) lub DHT22 (biały)

DHT11 oraz DHT22 to urządzenia komunikujące się interfejsem OneWire – stąd konieczność
zainstalowania biblioteki OneWire oraz biblioteki SimpleDHT. Przykładowym urządzeniem, które
nie posługuje się żadnym ze standardów, jest układ dalmierza ultradźwiękowego HC-SR04.

Po podaniu wysokiego stanu logicznego na wejście TRIG (o długości 10 µs) urządzenie wysyła
falę dźwiękową a po jej powrocie podaje sygnał na wyjściu ECHO. Arduino mierzy czas pomiędzy
jednym a drugim zdarzeniem, a czas ten (uwzględniając prędkość dźwięku – 340m/s) przelicza na
odległość.

Zadania na symulator odpowiadają zadaniom na IDE w sytuacji, gdy sprzęt fizyczny
(arduino wraz z układem) jest niedostępne.

1

Zadanie 7.1 wersja na Arduino IDE

Do wykonania zadania potrzebne są dodatkowe biblioteki, należy je zainstalować (o ile jeszcze nie
są zainstalowane) przy użyciu Narzędzia → Menadżer bibliotek, gdzie należy wyszukać

odpowiednie biblioteki i je zainstalować:

DHTNEW by Rob Tillart oraz SimpleDHT by Winlin

O podłączenie poniższych urządzeń należy zawsze poprosić prowadzącego.

a) Dalmierz ultradźwiękowy

• Z menu należy wybrać Plik → Przykłady → WTD → HCSR04. Przeanalizować program.

• Na podstawie przykładu napisać program, który będzie wysyłał do komputera informację o
aktualnej odległości oraz zapalał diodę gdy odległość będzie mniejsza niż 20 cm.

• Zmodyfikować program w taki sposób, by ilość zapalonych diod odpowiadała zmierzonej
odległości (np.: 10 cm – pierwsza dioda, 20 cm – druga dioda itd.).

b) Czujnik temperatury i wilgotności

• Z menu należy wybrać: Plik → Przykłady → WTD → DHT. Przeanalizować program.

• Napisać taki program, który będzie wysyłał do komputera informację o aktualnej wilgotno-
ści oraz zapalał diodę gdy ta przekroczy 50% (lub inną zadaną).

• Rozbudować program tak, aby po przekroczeniu zadanej temperatury (np. 27 st. C.) zapalała
się inna dioda.

• Rozbudować program tak, żeby w przypadku przekroczenia temperatury ORAZ wilgotności
zapalały się wszystkie diody.

• Dodatkowe (trudne): zmodyfikować zadanie tak, by po przekroczeniu odpowiednie diody
migały.

2

Zadanie 7.1 wersja na symulator (tinkercad.com, gdy niedostępne IDE!)

Niestety, obecna wersja symulatora nie pozwala na dodanie termometru ani higrometru. Natomiast
można użyć dalmierza. Aby z niego skorzystać należy napisać własną funkcję zastępczą

measureDistanceCM oraz użyć Ultradźwiękowego czujnika odległości

(wersja niebieska, HC-SR04).

int triggerPin = 4;
int echoPin = 3;

void setup () {
 Serial.begin(9600);
 pinMode(triggerPin, OUTPUT);
 pinMode(echoPin, INPUT);
}

void loop () {
 Serial.println(measureDistanceCM());
 delay(500);
}

int measureDistanceCM() {
 digitalWrite(triggerPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 unsigned long durationMicroSec = pulseIn(echoPin, HIGH);
 double distanceCm = durationMicroSec / 2.0 * 0.0343;
 if (distanceCm == 0 || distanceCm > 400) {
 return -1.0 ;
 } else {
 return (int)distanceCm;
 }
}

Polecenie:

• przeanalizować powyższy program (wersja dla mniej ambitnych: do measureDistanceCM),

• w symulatorze podłączyć czujnik odległości wg schematu z poprzedniej instrukcji oraz sko-
piować powyższy program do Kodu,

• uruchomić symulację, i zweryfikować analizę. Po kliknięciu czujnika, istnieje możliwość
przestawienia przedmiotu względem dalmierza.

• Zmodyfikować program tak, by wysyłał do komputera informację o aktualnej odległości
oraz zapalał diodę gdy odległość będzie mniejsza niż 20 cm.

3

Serwomechanizm – zamknięty układ sterowania (układ automatyki, układ regulacji) ze sprzężeniem
zwrotnym, w którym sygnałem wejściowym jest jakaś dana, taka jak położenie, prędkość czy

przyspieszenie. Często jest nim przesunięcie.

MicroServo to serwomechanizm często wy-
korzystywany w modelarstwie i różnych urzą-
dzeniach DIY. Wymaga ono jedynie informacji
w jakim położeniu ma się ustawić. Po otrzyma-
niu takiej informacji serwomechanizm w sposób
automatyczny ustawia się w zadane położenie i
kontroluje je w sposób ciągły.

7.2. Polecenie:

a) Arduino IDE: W Arduino wybrać Przykałdy → WTD → Serwo. Przeanalizować program
i zweryfikować jego działanie.

Symulator: Skopiować do symulatora kod z przykładu (link*), oraz podłączyć Mikroserwo
(niebieskie) do zasilania oraz sygnał do pinu D4. Przeanalizować program i zweryfikować jego
działanie.

b) Zmodyfikować program w taki sposób, by początkowa wartość potVal wynosiła 90 stopni.

Wykorzystać dwa przyciski w taki sposób, by jeden zmniejszał wartość potVal o jeden, a drugi

ją zwiększał. Kąt ustawienia serwonapędu powinien odpowiadać wartości potVal.

c) Rozbudować program o przycisk ustawiający serwonapęd w pozycję początkową.

*https://raw.githubusercontent.com/PMKrol/WTDAutomatyka/main/snap/arduino/current/
Arduino/libraries/WTD/examples/Serwo/Serwo.ino

Źródła:
pl.wikipedia.org/wiki/Serwomechanizm
lastminuteengineers.com
Arduino 1.8.9

Licencja MIT
Patryk Król

v2.1

4

https://raw.githubusercontent.com/PMKrol/WTDAutomatyka/main/snap/arduino/current/Arduino/libraries/WTD/examples/Serwo/Serwo.ino
https://raw.githubusercontent.com/PMKrol/WTDAutomatyka/main/snap/arduino/current/Arduino/libraries/WTD/examples/Serwo/Serwo.ino
https://raw.githubusercontent.com/PMKrol/WTDAutomatyka/main/snap/arduino/current/Arduino/libraries/WTD/examples/Serwo/Serwo.ino

